Vector network analyser reaches across many levels of engineer

4th June 2017
Posted By : Mick Elliott
Vector network analyser reaches across many levels of engineer

Aimed at designers working with high-speed data, communications or computing who often need to characterise high-frequency interfaces, devices, multi-path interconnect and antennas, Pico Technology has unveiled the PicoVNA 106, a UK-designed, USB-controlled, professional and laboratory-grade 300kHz to 6GHz vector network analyser.

To support todays engineers and systems integrators don’t have time to become microwave specialists the fast, portable and low-cost measurement instrument can support developing applications such as 5G, IoT, radar, and tissue and materials imaging.

Despite its small size and low cost, the instrument boasts a full-function, minimal-error, ‘Quad RX’ four-receiver architecture.

This supports both 8 and 12-term calibration without the uncorrectable switching errors, delays and unreliability of traditional three-receiver designs.

The instrument supports convenient calibration methods such as ‘enhanced  isolation correction’ and ‘unknown thru’.

The PicoVNA 106 has exceptional dynamic range of up to 118dB at 10Hz and only 0.005dB RMS trace noise at its maximum bandwidth of 140kHz.

It can gather all four S-parameters at just 190 microseconds per frequency point; in other words, a 500 point 2-port S2P Touchstone file, compatible with test, math, view and EDA simulation tools, in less than a tenth of a second.

This performance compares with other full-function vector network analysers at more than four times the cost, says Pico Technology. The instrument can be cost-effecctive as a high-dynamic-range scalar network analyser or a single-port vector reflectometer.

This breakthrough solution is affordable for classrooms, small businesses and even amateur workshops, yet able to meet the needs of the microwave laboratory and expert. Pico have even included bias-Ts for the convenient injection of a bias or test stimulus.

The analyser’s small size, weight and cost, and high performance suit it to field service, installation test, embedded and training applications.

Its remote automation interface suits it to test automation, perhaps as a reflectometry or transmission measurement core for embedded roles. Example test environments are broadband interconnect, cable and harness, antenna, component or subsystem assembly, installation and fault over life, in manufacture, calibration, distribution and service industries.

The PicoVNA 106 is supplied with Microsoft Windows software to support a full range of plot formats for scalar and vector view of dual or single-port parameters. These can be saved or exported in various graphic and tabular formats including Touchstone.

The software includes, at no additional cost, Fourier transformation to the time domain, adding convenient distance-to-fault capability and pulse response determination. In all cases nominal impedance transformation (10Ω to 200Ω) is available, mathematically or using port matching pads, with limit tests on the Cartesian plot formats.

Unwanted measurement contributions from feed lines, probes or test jigs can be eliminated using manual or automatic reference plane offset including, when required, fully independent offset for each S-parameter.

Alternatively, independent networks can be embedded or de-embedded at each port from a Touchstone representation of each, measured or synthesized.

Unusually for any vector network analyser, embedding or de-embedding is interpolated when measurement and network datasets do not share the same frequency points.

Pico has also included in its free-of-charge PicoVNA 2 software two utilities to tackle gain compression (P1dB) and AM to PM.

Both of these use a port power sweep at each test frequency. Both measures are extracted using second-order interpolation.

Calibration standards and interconnect for vector network analysis can dominate both performance and costs.

Pico offers PC3.5 and SMA, male and female test ports via flexible and flex-formable, phase- and flatness-stable test leads.

Four mating calibration standards, with traceable data, are assembled into convenient male and female SOLT housings.

Like the test leads, the SMA and PC3.5 calibration standards all use robust, high-precision stainless steel connectors.


You must be logged in to comment

Write a comment

No comments




More from Pico Technology Ltd

View & download Keysight product literature, application notes, specifications & brochures.

Literature

View & download Keysight technical support documentation, demos, manuals & selection/configuration guides.

Support

SPS IPC Drives 2017
28th November 2017
Germany Nuremberg
Cyber Security - Oil, Gas, Power 2017
29th November 2017
United Kingdom London
AI Tech World
29th November 2017
United Kingdom Olymipa, London
Maker Faire 2017
1st December 2017
Italy Rome
Virtual & Augmented Reality Creative Summit 2017
5th December 2017
United Kingdom Picturehouse Central, London